M1. (a)	Percentage of oxygen is 36.4% % of oxygen stated or shown in calculation. 1	
	Correct calculation of ratios (C 4.54, H 9.10, O 2.28) Mark is for correct method, dividing % by A,	
	Empirical formula C₂H₄O Allow consequential answer from wrong percentage of oxygen (max 2 marks). 1	
(b)	88 Accept 88.0 Do not penalise correct answer in g.	
(c)	Ratio MF / EF of 2 (88 / 44.0 = 2) If use 132 / 44 = 3, molecular formula $C_6H_{12}O_3$ scores 2 marks.	
	Molecular formula is $C_4H_8O_2$ Accept consequential answers from (a) and (b) 1	[6]
## (a) Average/mean mass of (1) atom(s) (of an element) 1/12 mass of one atom of ¹² C 1 If moles and atoms mixes Max = 1	
	OR	

(Average) mass of one mole of atoms

1/12 mass of one mole of 12C

OR

(Weighted) average mass of all the isotopes

1/12 mass of one atom of 12C

OR

Average mass of an atom/isotope compared to C-12 on a scale in which an atom of C-12 has a mass of 12

This expression = 2 marks

(b) d block

Allow 3d/D
Other numbers lose M1

Ignore transition metals

[Ar] 3d²4s²

1

1

Can be written in full Allow subscripts

3d² and 4s² can be in either order

27

1

(c)
$$\frac{(90 \times 9) + (91 \times 2) + (92 \times 3) + (94 \times 3)}{17}$$

(= 1550)

1

(or \sum their abundances)

If one graph reading error lose M1 and allow consequential M2 and M3.

If 2 GR errors penalise M1 and M2 but allow consequential M3

If not 17 or ∑ their abundances lose M2 and M3

1

= 91.2

91.2 = 3 marks provided working shown.

l

Zr/Zirconium

M4 -allow nearest consequential element from M3 accept Zr in any circumstance

(d) High energy electrons/bombarded or hit with electrons accept electron gun

1

knocks out electron(s) (to form ions)

1

 $Z^{+} = 90$ deflected most

If not 90 lose M3 and M4
If charge is wrong on 90 isotope lose M3 only
Accept any symbol in place of Z

1

since lowest mass/lowest m/z

Allow lightest

1

(e) (ions hit detector and) cause current/(ions) accept electrons/cause electron flow

QWC

1

bigger current = more of that isotope/current proportional to abundance

Implication that current depends on the number of ions

[15]

M3. (a)

(4.)		
Particle	Relative Charge	Relative mass
Proton	+1	1
Neutron	0	1

1

Need +1 for proton

1

= 183.90; allow range from 183.90 - 184.00;

[12]

M4. Proton mass = 1charge = +1(a) mass $\leq 1/1800 \text{ Or } \leq 5.6 \times 10^{-4}$ Electron charge = -1(Do not accept +1 for proton mass or 'g' units)

2

(b) 13 (i)

1

(ii) Si

1

Mass number = 28 and atomic number = 14 (Do not accept 28.1 or 28.0 or 'Silicon')

5

Mean (average) mass of an atom / all the isotopes (c)

1/12th mass of atom of 12C

Or Mass of 1 mole of atoms of an element (1)

1/12th mass of 1 mole of ¹²C (1)

Or Average mass of an atom / all the isotopes (1) relative to the mass of a ¹²C atom taken as exactly 12 / 12.000 (1) (Penalise 'weight' once only) (Ignore 'average' mass of 12C) (Do not allow 'mass of average atom')

2

- (d) $A_r = (24 \times 0.735) + (25 \times 0.101) + (26 \times 0.164) 1 = 24.4 1$ (mark M2 conseq on transcription error or incorrect addition of %)
- (e) M_r = highest m/z value 1 (NOT 'highest/largest/right-hand' peak)

3

M5. (a) Number of protons in the nucleus

1

(b) They may have different numbers of neutrons

1

(c) (i) Mass spectrometer

1

Mean massof an atom

(ii) Mass of 1 atom of 12 C × 12

2

sum of relative m/z x rel. abundance

(iii) $A_r = \frac{}{}$ Total abundance

1

 $= (82 \times 12 + 83 \times 12 + 84 \times 50 + 86 \times 26)/100 = 84.16$

1

(d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6$

1

(e) Krypton was thought to be an inert gas (or has 8 electrons in outer shell)

1

(f) (i) Krypton has more protons than bromine

1

But its outer electrons are in the same shell (or have similar shielding)

1

(ii) Al electron is in a 3p orbital, magnesium in 3s

1

[13]

1