M1.(a) Percentage of oxygen is 36.4%
\% of oxygen stated or shown in calculation.

Correct calculation of ratios (C 4.54, H 9.10, O 2.28)
Mark is for correct method, dividing \% by A_{r}

Empirical formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
Allow consequential answer from wrong percentage of oxygen (max 2 marks).
(b) 88

Accept 88.0
Do not penalise correct answer in g.
(c) Ratio MF / EF of $2(88 / 44.0=2)$

If use 132 / $44=3$, molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$ scores 2 marks.

Molecular formula is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
Accept consequential answers from (a) and (b)
(a) Average/mean mass of (1) atom(s) (of an element) $1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$

If moles and atoms mixes Max $=1$

OR
(Average) mass of one mole of atoms $1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$
OR
(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$

OR

Average mass of an atom/isotope compared to $\mathrm{C}-12$ on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12
This expression $=2$ marks
(b) d block
Allow 3d/D
Other numbers lose M1 Ignore transition metals
$[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}$
Can be written in full
Allow subscripts
$3 d^{2}$ and $4 s^{2}$ can be in either order
27
(c) $\frac{(90 \times 9)+(91 \times 2)+(92 \times 3)+(94 \times 3)}{17}$
$(=1550)$
(or \sum their abundances)
If one graph reading error lose M1 and allow consequential M2 and M3.
If 2 GR errors penalise M1 and M2 but allow consequential M3
If not 17 or \sum their abundances lose M2 and M3
$=91.2$
$91.2=3$ marks provided working shown.
Zr/Zirconium
M4 -allow nearest consequential element from M3 accept Zr in any circumstance
(d) High energy electrons/bombarded or hit with electrons accept electron gun
knocks out electron(s) (to form ions)
$Z^{+}=\underline{90}$ deflected most
If not 90 lose M3 and M4
If charge is wrong on 90 isotope lose M3 only
Accept any symbol in place of Z
since lowest mass/lowest m/z
Allow lightest
(e) (ions hit detector and) cause current/(ions) accept electrons/cause electron flow

QWC
bigger current = more of that isotope/current proportional to abundance
Implication that current depends on the number of ions
M3. (a)

Particle	Relative Charge	Relative mass
Proton	+1	1
Neutron	0	1

Need +1 for proton
(b) d block/ D block;

Or Dord
(c) (i) 74 ;

Not 74.0
(ii) 112;

Not 112.0
(d) (i) To accelerate/ make go faster;

To deflect/ to bend the beam;
Any order
Not just attract to negative plate
(ii) Electromagnet / magnet / electric field /accelerating potential or voltage;

Not electric current
Not electronic field
(e) None/ nothing;

If blank mark on.
If incorrect $C E=0$

Same number of electrons (in outer orbital/shell)/ both have 74 electrons/same electron configuration;

Not just electrons determine chemical properties
Ignore protons and neutrons unless wrong statement.
(f)

$$
\frac{(182 \times 26.4)+(183 \times 14.3)+(184 \times 30.7)+(186 \times 28.6)}{100} ;
$$

Page 5

$$
\begin{aligned}
& \text { M1 = AE = -1 and mark } \\
& \text { M2 consequentially }
\end{aligned}
$$

= 183.90; allow range from 183.90-184.00;
1
[12]

M4. (a) Proton mass $=1 \quad$ charge $=+1$
Electron mass $\leq 1 / 1800$ Or $\leq 5.6 \times 10^{-4} \quad$ charge $=-1$ (Do not accept +1 for proton mass or ' g ' units)
(b) (i) 13
(ii) Si

Mass number $=28$ and atomic number $=14$
(Do not accept 28.1 or 28.0 or 'Silicon')
(c) Mean (average) mass of an atom / all the isotopes $1 / 12^{14}$ mass of atom of ${ }^{12} \mathrm{C}$
Or Mass of 1 mole of atoms of an element (1) $1 / 12^{\mathrm{n}}$ mass of 1 mole of ${ }^{12} \mathrm{C}$ (1)
Or Average mass of an atom / all the isotopes (1) relative to the mass of a ${ }^{12} \mathrm{C}$ atom taken as exactly 12 / 12.000 (1)
(Penalise 'weight' once only) (Ignore 'average' mass of ${ }^{12} \mathrm{C}$) (Do not allow 'mass of average atom')
(d) $A_{t}=(24 \times 0.735)+(25 \times 0.101)+(26 \times 0.164) 1=24.41$
(mark M2 conseq on transcription error or incorrect addition of \%)
(e) $\quad \mathrm{M}_{\mathrm{r}}=$ highest m / z value 1
(NOT 'highest/largest/right-hand' peak)

M5. (a) Number of protons in the nucleus
(b) They may have different numbers of neutrons
(c) (i) Mass spectrometer
(ii) $\frac{\text { Mean mass of an atom }}{\text { Mass of } 1 \text { atom of }{ }^{12} \mathrm{C}} \times 12$
(iii) $\quad A_{\mathrm{f}}=\frac{\text { sumof relative } \mathrm{m} / \mathrm{z} \times \text { rel. abundance }}{\text { Total abundance }}$
$=(82 \times 12+83 \times 12+84 \times 50+86 \times 26) / 100=84.16$
(d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$
(e) Krypton was thought to be an inert gas (or has 8 electrons in outer shell)
(f) (i) Krypton has more protons than bromine

But its outer electrons are in the same shell (or have similar shielding)
(ii) Al electron is in a 3 p orbital, magnesium in 3 s

